Subventions et des contributions :

Titre :
Novel multilayered synthetic structural bone graft materials which combine biocompatibility, biodegradability and high toughness
Numéro de l’entente :
CHRPJ
Valeur d'entente :
163 223,00 $
Date d'entente :
25 avr. 2017 -
Organisation :
Conseil de recherches en sciences naturelles et en génie du Canada
Location :
Québec, Autre, CA
Numéro de référence :
GC-2017-Q1-00242
Type d'entente :
subvention
Type de rapport :
Subventions et des contributions
Informations supplémentaires :

Subvention ou bourse octroyée s'appliquant à plus d'un exercice financier. (2017-2018 à 2020-2021)

Nom légal du bénéficiaire :
Barthelat, Francois (Université McGill)
Programme :
Projets de recherche concertée sur la santé
But du programme :

Due to the ageing world population, techniques to replace, restore, or regenerate bone havex000D
become a major clinical need in the fields of orthopaedic, spinal, dental, cranial, andx000D
maxillofacial surgery. For these patients that suffer from bone loss and bone defects, surgicalx000D
treatment remains a major challenge. Traditional bone grafting techniques have performancex000D
limitations including donor site morbidity, viral transmission, immunologic incompatibility, longx000D
rehabilitation time and structural failure. The need for new strategies for the treatment of bonex000D
defects is therefore urgent. The ideal bone graft material must: (i) match the mechanicalx000D
properties of healthy bone; (ii) be biocompatible and promote healing and (iii) must degradex000D
over time to be replaced by healthy bone. To this day, there is no synthetic material that canx000D
fulfill these three requirements simultaneously. In this project we will develop a new structuralx000D
bone graft made from calcium sulfate, collagen and gelatin. All components of this materialx000D
are fully biocompatible and FDA-approved for use as biomaterials. The mineral contentx000D
provides stiffness, while the weaker protein layers can deflect incoming cracks to generatex000D
toughness. The implication is that this material can be used to fabricate load-carrying grafts,x000D
as opposed to traditional calcium phosphates/sulfates which are too brittle. The structuralx000D
bone graft can be of varying sizes and dimensions. In-vivo performance will be evaluated withx000D
an animal study. In addition, bone grafts with complex patient-specific shapes will bex000D
developed using 3D printed polymeric templates. This new medical technology will have ax000D
significant impact on restoring functionality and quality of life in patients requiringx000D
reconstruction of structural bone defects secondary to trauma, failed arthroplasties, bonex000D
tumors, maxillofacial surgery or other bone diseases.