Subventions et des contributions :

Titre :
Fabrication of 2D material devices using large-area manufacturable methods
Numéro de l’entente :
RGPIN
Valeur d'entente :
120 000,00 $
Date d'entente :
10 mai 2017 -
Organisation :
Conseil de recherches en sciences naturelles et en génie du Canada
Location :
Colombie-Britannique, Autre, CA
Numéro de référence :
GC-2017-Q1-02883
Type d'entente :
subvention
Type de rapport :
Subventions et des contributions
Renseignements supplémentaires :

Subvention ou bourse octroyée s'appliquant à plus d'un exercice financier. (2017-2018 à 2022-2023)

Nom légal du bénéficiaire :
Adachi, Michael (Simon Fraser University)
Programme :
Programme de subventions à la découverte - individuelles
But du programme :

The proposed research program involves the fabrication of 2D materials (graphene-like materials) devices using manufacturable methods. 2D materials are crystalline monolayer materials, the most famous of which is graphene. Recently, other 2D materials such as monolayer Si (or silicene), Ge (or germanene), P (or phosphorene), and MoS2 have shown extraordinary properties: high measured carrier mobility (>200 cm2/Vs), theoretical carrier mobility multiple times larger than their bulk counterpart, tuneable bandgap controlled by applied vertical electric field, high surface-volume ratio, anisotropic changes in resistance for selective gas detection, flexibility, and paramagnetic and spintronic properties. However, devices currently reported in literature mechanically transfer 2D materials in solution from a single crystal substrate, to a non-conducting substrate where electrical contacts are made, a process which is non-repeatable and not manufacturable. Therefore, innovation is required to develop manufacturing-friendly methods to prepare 2D material devices.

In the next 5 years, my team will grow 2D materials using repeatable, large-area techniques which are compatible with Si manufacturing processes to enable mass-production. In parallel, we will prepare 2D material devices using established techniques (exfoliation and chemical vapor deposition) for developing tuneable infrared detectors, gas sensors, biosensors, next-generation integrated circuits, and transparent impact/shock resistance. The optical, electronic, structural, mechanical, magnetic, thermal properties of 2D materials will be characterized and newly discovered properties will be used to develop new applications. The long-term objective of this research program is to commercialize 2D material devices developed in our lab.

My group will operate and maintain an existing cluster deposition tool to fabricate 2D material devices. This system is equipped with two sputtering deposition chambers and two plasma-enhanced chemical vapor deposition (PECVD) chambers. One PECVD chamber will also be upgraded to be capable of 2D material growth from vapor phase. The key advantage of a cluster tool system is that 2D materials grown in one chamber can be covered with a high-k dielectric and metal layer deposited in other chambers, which would be a unique capability in Canada. Transferring samples between chambers allows us to avoid impurity contamination and undesirable oxide formation between processes, an important feature for making high-performance devices. Application-specific devices will be tested in the lab facilities of collaborators. The proposed research program will lead to newly discovered material properties of 2D materials, and enable breakthroughs in device prototype fabrication involving industrial collaborations, which will have a direct impact on the Canadian high tech sector.