Subventions et des contributions :

Titre :
Automatic fault and performance loss detection of industrial chlorine electrolysis reactors at R2
Numéro de l’entente :
EGP
Valeur d'entente :
25 000,00 $
Date d'entente :
8 nov. 2017 -
Organisation :
Conseil de recherches en sciences naturelles et en génie du Canada
Location :
Québec, Autre, CA
Numéro de référence :
GC-2017-Q3-00595
Type d'entente :
subvention
Type de rapport :
Subventions et des contributions
Informations supplémentaires :

Subvention ou bourse octroyée s'appliquant à plus d'un exercice financier (2017-2018 à 2018-2019).

Nom légal du bénéficiaire :
Yacout, Soumaya (École Polytechnique de Montréal)
Programme :
Subventions d'engagement partenarial pour les universités
But du programme :

The production of Chlor-Alkli by using electrolysis of aqueous solutions of sodium chloride (or brine) is one ofx000D
the largest industrial scale electro-synthesis worldwide. Plants with more than 1000 individual reactors, inx000D
which 0.2 mm thin membranes separate chlorine and hydrogen, are common. The Chlor-Alkali manufacturingx000D
process must be fully controlled in order to avoid any wrong operation which can cause explosions, highlyx000D
toxic gas releases, irreversible damages of very expensive cell components and dramatic maintenance costs andx000D
production loss.x000D
At R2, which is a leading Canadian enterprise in this field, expert systems are combined to well-knownx000D
machine learning techniques in order to monitor and to detect any abnormal performance and operatingx000D
conditions. This combined system faces some scientific challenges due to the nature of the acquired data. Thus,x000D
the objective of this project is to address these challenges and to propose some solutions that are based on thex000D
latest advancement in the field of machine learning.x000D
In this research, we seek to study these challenges and to propose solutions, in order to construct a warning andx000D
decision support system by using machine-learning techniques. This system will detect and predict anyx000D
abnormal operating conditions, and will advise the operator of the best possible action that must be taken.