Subventions et des contributions :
Subvention ou bourse octroyée s'appliquant à plus d'un exercice financier (2017-2018 à 2021-2022).
Insurance Bureau of Canada estimated the overall loss after a 9.0-magnitude earthquake in British Columbia at almost $75B, which reflects the vulnerability of Canadian civil infrastructure. Harsh winter is another critical factor for deterioration of Canadian infrastructure where de-icing salt causes accelerated corrosion to steel. Fibre-reinforced polymer (FRP) bars were introduced as reinforcement in concrete structures to prevent corrosion. However, FRP is a brittle material without inelastic branch. Thus, FRP reinforced concrete (RC) structures exhibit poor ductility with low energy dissipation capacity leading to a major problem in seismic design. This issue can be addressed by introducing hybrid reinforcement where FRP bars can be used along with a ductile material, e.g. steel, or shape memory alloy (SMA) rebar to introduce ductility. FRP rebar cage can be placed in the exterior cage to provide corrosion resistance whereas steel can be used in the inner cage to provide ductility. Since SMA is also good against corrosion but costly, it can be placed at the plastic hinge region, and spliced with other rebar type in the outer cage of RC elements. Little research has been directed towards hybrid reinforcement where FRP rebar is used along with another ductile material and using spliced connections. This study will determine the seismic behavior of concrete bridge piers having hybrid reinforcement, and compare its performance to that of a regular steel RC bridge piers in terms of
load-displacement, moment-rotation and energy dissipation capacity, and strains in the longitudinal and transverse reinforcements. Currently, there is no numerical tool available to predict the response of RC elements having hybrid reinforcements. Hence, another important objective of this study is to develop numerical tools to predict the response of RC elements having hybrid reinforcements in terms of
moment-curvature response, pushover response, and seismic response and implement them in S-Frame Software. These tools will assist in developing performance-based design guidelines and performing fragility assessment for such hybrid RC elements and structures.