Subventions et des contributions :

Titre :
A data-driven platform for multimodal positioning and tracking in indoor environments
Numéro de l’entente :
CRDPJ
Valeur d'entente :
460 000,00 $
Date d'entente :
7 mars 2018 -
Organisation :
Conseil de recherches en sciences naturelles et en génie du Canada
Location :
Ontario, Autre, CA
Numéro de référence :
GC-2017-Q4-00340
Type d'entente :
subvention
Type de rapport :
Subventions et des contributions
Informations supplémentaires :

Subvention ou bourse octroyée s'appliquant à plus d'un exercice financier (2017-2018 à 2020-2021).

Nom légal du bénéficiaire :
Chiang, Fei Yen (McMaster University)
Programme :
Subventions de recherche et développement coopérative - projet
But du programme :

Locating and tracking people's activities in indoor environments are crucial to location-based services (LBS) such as indoor wayfinding, proximity-based advertisement, workforce management, geo-fencing, fraud detection, etc. Existing indoor position systems (IPS) fall short in cost, accuracy, usability, understanding of interactions between users and environment, and working in device-free settings. The project builds upon our extensive experience in IPS, proximity technologies, and data fusion to develop a multimodal IPS solution at sub-meter accuracy that can be used in a variety of markets (e.g, retail, health, warehouse, etc.). Our envisioned platform consists of the following components: (1) a distributed camera network that monitors the areas of interest, along with mobile sensors on personal devices; (2) real-time vision data processing and localization to identify and track objects as well as people's activities; and (3) a data preparation and analysis engine that cleans and curates the data for analytics. In this proposal, we will address both algorithmic and computational challenges posed by processing in real-time, multi-modal streaming data to develop an accurate and reliable indoor localization platform.x000D
x000D
x000D
x000D
x000D