Subventions et des contributions :

Titre :
Digital multidisciplinary analysis and design optimization platform for aeroderivative gas turbines
Numéro de l’entente :
CRDPJ
Valeur d'entente :
785 000,00 $
Date d'entente :
7 mars 2018 -
Organisation :
Conseil de recherches en sciences naturelles et en génie du Canada
Location :
Québec, Autre, CA
Numéro de référence :
GC-2017-Q4-00939
Type d'entente :
subvention
Type de rapport :
Subventions et des contributions
Informations supplémentaires :

Subvention ou bourse octroyée s'appliquant à plus d'un exercice financier (2017-2018 à 2022-2023).

Nom légal du bénéficiaire :
Kokkolaras, Michael (Université McGill)
Programme :
Subventions de recherche et développement coopérative - projet
But du programme :

Gas turbine design is a challenging task because of inherent system complexity. For aero-derivative gasx000D
turbines (AGT) the design process is quite fragmented and relies strongly on historical data obtained fromx000D
previous engines. Siemens Canada AGT, a leading industrial gas turbine original equipment manufacturerx000D
(OEM), has determined that currently compartmentalized design activities lead to sub-optimal and non-robustx000D
designs while design engineers spend a considerable amount of their time on non-added value tasks. Therefore,x000D
it has developed a technology strategy that aims at supporting a highly integrated concurrent design process inx000D
order to improve performance and robustness of its products, maximizing thus its competitiveness whilex000D
minimizing its financial risks.x000D
The objective of this project is to build a digital platform for models and data management with an integratedx000D
suite of analysis, design, and optimization tools. One of the novelties of the proposed research is to adapt toolx000D
integration best practices and change propagation techniques from software engineering in order to build thex000D
solid foundation of a computational environment that integrates functional data management, model versionx000D
control, analysis tools and optimization algorithms in a way that is customizable to the specific workflows ofx000D
different engineering teams using machine learning techniques. The analysis, design and optimization modulesx000D
of the digital platform will include parametric design models for critical static and rotary components,x000D
lifecycle-related quantification techniques, multidisciplinary design optimization (MDO) methods, and robustx000D
design tools.