Subventions et des contributions :

Titre :
Materials and Device Development for Silicon-based Optoelectronics
Numéro de l’entente :
RGPIN
Valeur d'entente :
235 000,00 $
Date d'entente :
10 mai 2017 -
Organisation :
Conseil de recherches en sciences naturelles et en génie du Canada
Location :
Ontario, Autre, CA
Numéro de référence :
GC-2017-Q1-02165
Type d'entente :
subvention
Type de rapport :
Subventions et des contributions
Informations supplémentaires :

Subvention ou bourse octroyée s'appliquant à plus d'un exercice financier. (2017-2018 à 2022-2023)

Nom légal du bénéficiaire :
Knights, Andrew (McMaster University)
Programme :
Programme de subventions à la découverte - individuelles
But du programme :

The seemingly insatiable demand for increased bandwidth on communication networks is presenting the greatest technological challenges ever made on hardware and software engineers alike. Indicators of bandwidth demand include the number of devices connected to the internet and the total traffic within data-centres; both exhibit exponential growth. The former relates directly to the so-called Internet-of-Things (IoT) while the latter presents the stark reality of a roadmap with an inevitable trajectory, but for which solutions for realization are not known, or have yet to be implemented.
This proposal will address the need for network hardware that is scalable and cost-effective, utilizing the powerful technology known as Silicon Photonics (SiP). At its most fundamental level SiP integrates electronic with optical quanta with remarkable performance gains; SiP will revolutionize data transfer at all distances. In the proposal I describe an innovative program of research on materials and devices for SiP systems. The program is constructed as a strong training vehicle for graduate engineers.
I will explore characteristics of defects engineered via ion implantation in silicon waveguides. Such defects find utilization (for example) in monolithic detectors. This is of particular importance at wavelengths around 2000nm where a new communication window is under development. I will subsequently fabricate a complete SiP platform for 2000nm and demonstrate an optical link operating at >25Gb/s. I will develop ion beam techniques which show promise for selective synthesis of germanium volumes in silicon for applications requiring strain engineering. Using silicon microring modulators I will expand my previous work on highly integrated WDM transceivers. I will explore methods for microring stabilization and post-fabrication trimming with the aim to dramatically reduce the associated power budget. I will expand on my previous work on dispersion compensation using silicon microring modulators to the use of compounded elements such as dual rings, or ring assisted Mach-Zehnders which will provide link-dispersion tuning. I will pursue the concept of sub-carrier modulation with the aim of realising data transfer rates approaching 1Tb/s for a single unit when combined with WDM.
Tangible benefits to Canadians will include: a) strategic support for the Canadian SiP industry; b) direct training of HQP for a vital industrial sector c) realization of new SiP-enabled products and services. In a broad sense, this work will form part of the unfolding global information revolution which is experienced by Canadians who download information, take part in social networking, access information on their environment, require rapid medical diagnosis, and utilize consumer electronics.