Subventions et des contributions :

Titre :
Machine learning and computer vision for plant health
Numéro de l’entente :
EGP
Valeur d'entente :
25 000,00 $
Date d'entente :
13 déc. 2017 -
Organisation :
Conseil de recherches en sciences naturelles et en génie du Canada
Location :
Colombie-Britannique, Autre, CA
Numéro de référence :
GC-2017-Q3-00479
Type d'entente :
subvention
Type de rapport :
Subventions et des contributions
Informations supplémentaires :

Subvention ou bourse octroyée s'appliquant à plus d'un exercice financier (2017-2018 à 2018-2019).

Nom légal du bénéficiaire :
Hamarneh, Ghassan (Simon Fraser University)
Programme :
Subventions d'engagement partenarial pour les universités
But du programme :

Greenhouse plants must be continuously monitored for detecting pests and diseases. It is also important tox000D
examine the crop's fruit production by estimating their numbers and the right time for harvesting. Thesex000D
processes are currently performed manually via tedious and time consuming visual inspection procedures,x000D
which can take weeks for an average size greenhouse. The main focus of this project is on developingx000D
computational tools for the automated, fast, and accurate interpretation of image data gathered from the plants.x000D
In particular, in collaboration with Ecoation, we will develop computer vision and machine learning softwarex000D
tools to analyze plant image data and identify important horticultural features and plant health status. Thisx000D
project is essential for the company's development of machine learning and computer vision products tox000D
significantly reduce the need for human scouting for plant problems due to its precise and timely alertingx000D
capabilities. With the development this project can bring, Ecoation anticipates incremental reductions in cropx000D
loss due to the use of the Ecoation System in greenhouses. As the result of our early stage detection of cropx000D
stress, just in BC, it can save growers $20 million each year.