Subventions et des contributions :

Titre :
Use of probabilistic graphical models for bioinformatics
Numéro de l’entente :
EGP
Valeur d'entente :
25 000,00 $
Date d'entente :
13 déc. 2017 -
Organisation :
Conseil de recherches en sciences naturelles et en génie du Canada
Location :
Manitoba, Autre, CA
Numéro de référence :
GC-2017-Q3-00613
Type d'entente :
subvention
Type de rapport :
Subventions et des contributions
Informations supplémentaires :

Subvention ou bourse octroyée s'appliquant à plus d'un exercice financier (2017-2018 à 2018-2019).

Nom légal du bénéficiaire :
Domaratzki, Michael (Université du Manitoba)
Programme :
Subventions d'engagement partenarial pour les universités
But du programme :

This project will help Sightline Innovation develop new techniques to employ machine learning for biology.x000D
Sightline Innovation provides artificial intelligent products and solutions for businesses around the world.x000D
Sightline Innovation is working to adapt its artificial intelligence tools for biological data. This data may bex000D
DNA, RNA or protein data, and is typically part of large, complex datasets. Machine learning will helpx000D
determine patterns in this biological data that allow researchers to characterize observable, physical traits inx000D
individuals from the biological data. These traits may include susceptibility to disease or prognosis forx000D
recovery.x000D
In this project, Dr. Domaratzki (U.Manitoba) and Dr. Mark Alexiuk (CTO, Sightline Innovation) will workx000D
together with a research associate to develop new, high-performance tools for bioinformatics datasets. Thesex000D
tools will provide critical understanding of causality and correlationship between experimental data and clinicalx000D
or observed states in patient data. The research project will also help in developing new and more accuratex000D
algorithms and computational tools to predict future trends. With improved computational tools, Sightlinex000D
Innovation will be able to improve predictions for a variety of application areas. This represents a contributionx000D
to the fundamental machine learning tools developed and employed by Sightline Innovation.