Subventions et des contributions :

Titre :
Machine Learning Models for Drinking Water Quality Monitoring based on Sensor Data
Numéro de l’entente :
EGP
Valeur d'entente :
25 000,00 $
Date d'entente :
7 févr. 2018 -
Organisation :
Conseil de recherches en sciences naturelles et en génie du Canada
Location :
Ontario, Autre, CA
Numéro de référence :
GC-2017-Q4-00331
Type d'entente :
subvention
Type de rapport :
Subventions et des contributions
Renseignements supplémentaires :

Subvention ou bourse octroyée s'appliquant à plus d'un exercice financier (2017-2018 à 2018-2019).

Nom légal du bénéficiaire :
Chen, Shengyuan (Université York)
Programme :
Subventions d'engagement partenarial pour les universités
But du programme :

Drinking water poisoning are not rare even in well developed countries like USA and Canada. Pollutants likex000D
CaCO3, Sodium Chloride, Lead, K12 E.Coli, Fungal could enter our water system in every stage, water plant,x000D
pipe, or the end faucet. Hence it is not enough to monitor water quality only at the source. Historically it isx000D
impossible or prohibitively expensive to install monitoring devices at the end user side. Only big entities likex000D
hospitals, food processing companies, etc. can afford water quality monitoring devices. Now the developmentx000D
of sensor technology makes it possible and economical to install sensors at each individual faucet. However,x000D
sensors at individual faucets are subject to great unknown factors and noises. After all, a kitchen is not ax000D
spotless scientific lab. This causes greater difficulties in classifying whether or not the drinking water underx000D
monitoring is polluted or not. We need a new robust machine learning model and algorithm, which canx000D
accurately trigger alarms such a noisy environment. The advancement of big data technologies and machinex000D
learning algorithms make this otherwise impossible goal highly likely.