Subventions et des contributions :

Titre :
Fluorescence imaging analysis software tools for high throughput automated workflow solution in digital pathology
Numéro de l’entente :
CRDPJ
Valeur d'entente :
168 116,00 $
Date d'entente :
10 janv. 2018 -
Organisation :
Conseil de recherches en sciences naturelles et en génie du Canada
Location :
Ontario, Autre, CA
Numéro de référence :
GC-2017-Q4-01462
Type d'entente :
subvention
Type de rapport :
Subventions et des contributions
Informations supplémentaires :

Subvention ou bourse octroyée s'appliquant à plus d'un exercice financier (2017-2018 à 2019-2020).

Nom légal du bénéficiaire :
Plataniotis, Konstantinos (University of Toronto)
Programme :
Subventions de recherche et développement coopérative - projet
But du programme :

In collaboration with Huron Digital Pathology Inc., of Waterloo, Ontario, the University of Toronto (UofT)x000D
team aims to develop an innovative image processing framework for the custom-tailored fluorescence imagingx000D
workflow of Huron's next generation TissueScope. Using tools from signal & image processing, computerx000D
vision, and machine learning, the applicants plan to research, develop, and test new, cutting-edge fluorescencex000D
imaging algorithmic solutions.x000D
Despite effective utilization of existing virtual microscopes, the goal of delivering a fully integrated, scalable,x000D
certified for clinical use, digital pathology framework has not yet materialized. According to early adopters ofx000D
integrated digital pathology the main reason for the delay is the lack of progress in integrating the digitalx000D
scanners with advanced image processing modules. The delay is attributed to hardware related issues, such asx000D
those pertinent to the automation of the image acquisition process, and software related issues such as the usex000D
of proprietary protocols in the processing pipeline which result in a diverse set of image navigation, contrastx000D
correction, spectral mapping and enhancement, segmentation, and information retrieval solutions.x000D
The proposed framework will greatly decrease the time and computational complexity of the image acquisitionx000D
and scanning process while improving accuracy and reliability, and enhancing the end-user experience.